Channel and spatial attention mechanism has proven to provide an evident performance boost of deep convolution neural networks (CNNs). Most existing methods focus on one or run them parallel (series), neglecting the collaboration between the two attentions. In order to better establish the feature interaction between the two types of attention, we propose a plug-and-play attention module, which we term "CAT"-activating the Collaboration between spatial and channel Attentions based on learned Traits. Specifically, we represent traits as trainable coefficients (i.e., colla-factors) to adaptively combine contributions of different attention modules to fit different image hierarchies and tasks better. Moreover, we propose the global entropy pooling (GEP) apart from global average pooling (GAP) and global maximum pooling (GMP) operators, an effective component in suppressing noise signals by measuring the information disorder of feature maps. We introduce a three-way pooling operation into attention modules and apply the adaptive mechanism to fuse their outcomes. Extensive experiments on MS COCO, Pascal-VOC, Cifar-100, and ImageNet show that our CAT outperforms existing state-of-the-art attention mechanisms in object detection, instance segmentation, and image classification. The model and code will be released soon.
translated by 谷歌翻译
Vehicle re-identification (Re-ID) is a critical component of the autonomous driving perception system, and research in this area has accelerated in recent years. However, there is yet no perfect solution to the vehicle re-identification issue associated with the car's surround-view camera system. Our analysis identifies two significant issues in the aforementioned scenario: i) It is difficult to identify the same vehicle in many picture frames due to the unique construction of the fisheye camera. ii) The appearance of the same vehicle when seen via the surround vision system's several cameras is rather different. To overcome these issues, we suggest an integrative vehicle Re-ID solution method. On the one hand, we provide a technique for determining the consistency of the tracking box drift with respect to the target. On the other hand, we combine a Re-ID network based on the attention mechanism with spatial limitations to increase performance in situations involving multiple cameras. Finally, our approach combines state-of-the-art accuracy with real-time performance. We will soon make the source code and annotated fisheye dataset available.
translated by 谷歌翻译
Obtaining the position of ego-vehicle is a crucial prerequisite for automatic control and path planning in the field of autonomous driving. Most existing positioning systems rely on GPS, RTK, or wireless signals, which are arduous to provide effective localization under weak signal conditions. This paper proposes a real-time positioning system based on the detection of the parking numbers as they are unique positioning marks in the parking lot scene. It does not only can help with the positioning with open area, but also run independently under isolation environment. The result tested on both public datasets and self-collected dataset show that the system outperforms others in both performances and applies in practice. In addition, the code and dataset will release later.
translated by 谷歌翻译
Surround-view fisheye perception under valet parking scenes is fundamental and crucial in autonomous driving. Environmental conditions in parking lots perform differently from the common public datasets, such as imperfect light and opacity, which substantially impacts on perception performance. Most existing networks based on public datasets may generalize suboptimal results on these valet parking scenes, also affected by the fisheye distortion. In this article, we introduce a new large-scale fisheye dataset called Fisheye Parking Dataset(FPD) to promote the research in dealing with diverse real-world surround-view parking cases. Notably, our compiled FPD exhibits excellent characteristics for different surround-view perception tasks. In addition, we also propose our real-time distortion-insensitive multi-task framework Fisheye Perception Network (FPNet), which improves the surround-view fisheye BEV perception by enhancing the fisheye distortion operation and multi-task lightweight designs. Extensive experiments validate the effectiveness of our approach and the dataset's exceptional generalizability.
translated by 谷歌翻译
Monocular 3D object detection is a low-cost but challenging task, as it requires generating accurate 3D localization solely from a single image input. Recent developed depth-assisted methods show promising results by using explicit depth maps as intermediate features, which are either precomputed by monocular depth estimation networks or jointly evaluated with 3D object detection. However, inevitable errors from estimated depth priors may lead to misaligned semantic information and 3D localization, hence resulting in feature smearing and suboptimal predictions. To mitigate this issue, we propose ADD, an Attention-based Depth knowledge Distillation framework with 3D-aware positional encoding. Unlike previous knowledge distillation frameworks that adopt stereo- or LiDAR-based teachers, we build up our teacher with identical architecture as the student but with extra ground-truth depth as input. Credit to our teacher design, our framework is seamless, domain-gap free, easily implementable, and is compatible with object-wise ground-truth depth. Specifically, we leverage intermediate features and responses for knowledge distillation. Considering long-range 3D dependencies, we propose \emph{3D-aware self-attention} and \emph{target-aware cross-attention} modules for student adaptation. Extensive experiments are performed to verify the effectiveness of our framework on the challenging KITTI 3D object detection benchmark. We implement our framework on three representative monocular detectors, and we achieve state-of-the-art performance with no additional inference computational cost relative to baseline models. Our code is available at https://github.com/rockywind/ADD.
translated by 谷歌翻译
近年来,基于卷积网络的视频动作识别令人鼓舞地普及;然而,受到远程非线性时间关系建模和反向运动信息建模的限制,因此,现有模型的性能是严重的。为了解决这一紧急问题,我们引入了一个具有自我监督(TTSN)的令人惊叹的时间变压器网络。我们的高性能TTSN主要由时间变压器模块和时间序列自我监控模块组成。简明扼要地说,我们利用高效的时间变压器模块来模拟非本地帧之间的非线性时间依赖性,这显着增强了复杂的运动特征表示。我们采用的时间序列自我监控模块我们专注于“随机批量随机通道”的简化策略来反转视频帧的序列,允许从反向时间维度提高运动信息表示并提高模型的泛化能力。在三个广泛使用的数据集(HMDB51,UCF101和某事物)上的广泛实验已经得出结论地证明,我们提出的TTSN充满希望,因为它成功实现了行动识别的最先进性能。
translated by 谷歌翻译
最近,与常规像素的隐性表示相比,视频的图像隐式神经表示,其有希望的结果和迅速的速度因其有希望的结果和迅速的速度而受欢迎。但是,网络结构内的冗余参数在扩大理想性能时会导致大型模型大小。这种现象的关键原因是神经的耦合公式,该公式直接从框架索引输入中输出视频帧的空间和时间信息。在本文中,我们提出了E-NERV,它通过将图像的隐式神经代表分解为单独的空间和时间上下文来显着加快神经的速度。在这种新公式的指导下,我们的模型大大降低了冗余模型参数,同时保留表示能力。我们从实验上发现,我们的方法可以通过更少的参数改善性能,从而使收敛的速度更快地提高了$ 8 \ times $。代码可在https://github.com/kyleleey/e-nerv上找到。
translated by 谷歌翻译
损失函数在培训基于网络的对象探测器方面发挥着重要作用。对象检测的最广泛使用的评估度量是平均精度(AP),其同时捕获本地化和分类子任务的性能。然而,由于AP度量标准的非可分性性质,传统的对象探测器采用两个子任务采用单独的可分散损耗。这种错误对齐问题可能会导致性能下降。为了解决这个问题,现有的作品寻求手动设计AP公制的代理损失,这需要专业知识,并且可能仍可能是次优。在本文中,我们提出了参数化的AP损耗,其中引入参数化功能以替换AP计算中的非微弱组件。因此,不同的AP近似由统一公式中的参数化函数系列表示。然后采用自动参数搜索算法来搜索最佳参数。具有三种不同对象探测器的CoCo基准的广泛实验(即,RetinAnet,更快的R-CNN和可变形DETR)表明,所提出的参数化AP损耗始终如一地优于现有的手工损失。代码在https://github.com/fundamentalvision/parameterized-ap-loss发布。
translated by 谷歌翻译
参考图像分割是典型的多模模式任务,其目的在于为给定语言表达式中描述的参考生成二进制掩码。现有技术采用双峰解决方案,以编码器 - 融合解码器管道内的两种方式采用图像和语言。但是,由于两个原因,该管道对目标任务进行了次优。首先,它们仅保险熔断由单模编码器产生的高级别功能,其妨碍了足够的跨模型学习。其次,UNI-Modal编码器是独立预先培训的,这在预训练的UNI-DOMAL任务和目标多模态任务之间带来不一致。此外,这种管道经常忽略或几乎没有使用直观有益的实例级别功能。为了减轻这些问题,我们提出了邮件,这是一个更简洁的编码器解码器管道,具有掩码图像语言Trimodal编码器。具体而言,邮件将Uni-Modal特征提取器及其融合模型统一到深度模态交互编码器中,促进了不同模式的足够的特征交互。同时,邮件直接避免了第二个限制,因为不再需要单模编码器。此外,我们第一次提出将实例掩码介绍为额外的模态,这明确加强了实例级别特征并促使更精细的分段结果。该邮件在所有常用的引用图像分割数据集中设置了一种新的最先进的,包括Refcoco,Refcoco +和G-Ref,具有显着的收益,与以前的最佳方法为3%-10%。代码即将发布。
translated by 谷歌翻译
最近,自我关注操作员将卓越的性能作为视觉模型的独立构建块。然而,现有的自我关注模型通常是手动设计的,从CNN修改,并仅通过堆叠一个操作员而获得。很少探索相结合不同的自我关注操作员和卷积的更广泛的建筑空间。在本文中,我们探讨了具有权重共享神经结构搜索(NAS)算法的新颖建筑空间。结果架构被命名为Triomet,用于组合卷积,局部自我关注和全球(轴向)自我关注操作员。为了有效地搜索在这个巨大的建筑空间中,我们提出了分层采样,以便更好地培训超空网。此外,我们提出了一种新的重量分享策略,多头分享,专门针对多头自我关注运营商。我们搜索的Tri of将自我关注和卷积相结合优于所有独立的模型,在想象网分类上具有较少的拖鞋,自我关注比卷积更好。此外,在各种小型数据集上,我们观察对自我关注模型的劣等性能,但我们的小脚仍然能够匹配这种情况下的最佳操作员,卷积。我们的代码可在https://github.com/phj128/trionet提供。
translated by 谷歌翻译